
Optech Schnorr/Taproot Workshop

September 2019

Welcome!

Why Schnorr/Taproot?

1 ● 30-75% savings on multisig

● 2.5x faster block validation
Scalability

2 ● All outputs and most spends indistinguishablePrivacy and Fungibility

3
● Very large k of n multisig

● Larger scripts

● Script innovation
Functionality

1. Better in every way than ECDSA

2. 11% smaller than existing signatures

3. Compatible with existing private keys

4. Same security assumption...with a theoretical proof

5. Verification algorithm is linear

Schnorr signatures

Schnorr enables key and signature aggregation

Alice’s Key

Bob’s Key

Charlie’s Key

Aggregated KeyMusig

Script trees

Tree
Root

Primary Spending
Script

Hash Hash

Alternative
Spending Script

h/t BitMEX

Exchange 2-of-3 using Musig keytrees

Exchange +
3P key

Taproot
Output

KeyMAST
Root

Hash Hash

Taproot Script
Exchange + cold

key

Taproot Script

3P + cold key

Why Optech?

Bitcoin Optech helps Bitcoin users and businesses integrate scaling technologies.

We provide workshops, documentation, weekly newsletters, original research, case
studies and announcements, analysis of Bitcoin software and services, and help
facilitate improved relations between businesses and the open source community.

Why this workshop?

● Help share current thinking on schnorr/taproot

● Give engineers a chance to play with the technology

● Involve engineers in the feedback process

The schnorr/taproot proposal is a proposal

- Details will change
- There is no roadmap
- The workshop code is for educational

purposes only!

WARNING!

Chapter 0.1

Toolchain Setup

Did you do your homework?

● Optech Bitcoin Repository:
https://github.com/bitcoinops/bitcoin/releases/tag/Taproot_V0.1.4

● Workshop Repository: https://github.com/bitcoinops/taproot-workshop
● Pull latest taproot-workshop
● $ jupyter-notebook

○ 0.1-test-notebook

https://github.com/bitcoinops/bitcoin/releases/tag/Taproot_V0.1.4
https://github.com/bitcoinops/taproot-workshop

Chapter 0.2

Elliptic Curve Math

Scalars (numbers)

● Regular arithmetic but modulo the group order (SECP256K1_ORDER)
● a·b mod n
● Division done using modular inverse (i.e. Fermat’s little theorem: ap = a)
● Numbers can go from 0 to (group order - 1). eg:

○ (15 + 9) mod 21 = 24 mod 21 = 3
○ (-3) mod 21 = (21-3) = 18

Points on the elliptic curve

● Point = (x, y)
● G is the generator point for our group. (i.e. P = dG)
● The curve points form an abelian group:

○ Closure: if A is a point and B is a point than A + B is a point.

○ Associativity: (A + B) + C = A + (B + C)
○ Identity element: A + ∞ = ∞ + A = A
○ Inverse: For every point A there exist another point B such that A + B = 0
○ Commutativity: A + B = B + A

● Scalar operations:
○ scalar * point: sG = {G + G + G + G … s times}

○ point by point division isn’t feasible and requires solving discrete log

Chapter 1.1

Schnorr

Schnorr
Signing:

Verifying:

Glossary
m - message

e = H(R||P||m)

G - generator point

d - private key

point - scalar * G = (x,y)

P - public key (P = dG)

k - random nonce

R - nonce point (R = kG)

X only R Points/Public Keys
● Secp256k1:

● Solve for y:

● (-a) mod n = n - a

● Even/odd only (odd-even=odd; odd-odd=even)

● Lower/higher half

● Quadratic residue

Chapter 1.2

MuSig

Naive key aggregation

Glossary
m - message

e = H(R||P||m)

G - generator point

d - private key

point - scalar * G = (x,y)

P - public key (P = dG)

k - random nonce

R - nonce point (R = kG)

Key cancellation (rogue key) attack

Glossary
m - message

e = H(R||P||m)

G - generator point

d - private key

point - scalar * G = (x,y)

P - public key (P = dG)

k - random nonce

R - nonce point (R = kG)

Musig coefficients

Glossary
m - message

e = H(R||P||m)

G - generator point

d - private key

point - scalar * G = (x,y)

P - public key (P = dG)

k - random nonce

R - nonce point (R = kG)

Nonce commitments

Glossary
m - message

e = H(R||P||m)

G - generator point

d - private key

point - scalar * G = (x,y)

P - public key (P = dG)

k - random nonce

R - nonce point (R = kG)

Chapter 2.1 - 2.4

Taproot

Default & Alternative Spending Paths

● Default Spending Path
○ Single or multi-party public keys (indistinguishable)

● Alternative Spending Path(s)
○ Single or multiple “hidden” alternative scripts.
○ Only the script of the spent path is revealed when spent.

Taproot: Multi-party contract

● Default Spending Path
○ Aggregated pubkey/signature.
○ Default spending path hides multi-party contract.

● Alternative Spending Path(s)
○ In aggregate, enforce the multi-party contract.
○ script_0 OR script_1 OR script_2 ...

Chapter 2.1

Segwit Version 1

Segwit version 1

Segwit version 1

● Output script:
○ Script: [01] [33B public key]
○ Has recently been reduced to 32B public key in bip-schnorr.
○ This workshop has been built with the previous 33B public key format.

● Satisfying Witness:
○ Key path: [64B BIP-schnorr signature]
○ Script path: [initial stack] [tapscript] [controlblock]

P2PK vs P2PKH
● P2PK vs P2PKH:

○ V1 Script: [01] [33B public key]

○ V1 Witness: [64/65B signature]

○ V0 Script: [00] [20B pubkey hash]

○ V0 Witness: [DER signature(ecdsa)] [public key]

● V1 program witness: single key, MuSig, ...

● Disadvantages of P2PKH:

○ Cost: pubkey + pubkey hash

Taproot Sighash Flags

● Taproot retains legacy sighash flag semantics
○ ALL, NONE, SINGLE, ANY
○ New implied ALL sighash flag (0x00)

Taproot: Schnorr signature encoding

● x(R), s
○ x(R): 32B
○ s: 32B
○ Sighashflag: - (SIGHASH_ALL is implied) (0x00)

● x(R), s, sighashflag
○ x(R): 32B
○ s: 32B
○ SIGHASH flag: 1B (All, None, Single, Any) 0x01, 0x02, 0x03, 0x8...

v1: schnorr signature hash
● Control

○ Always epoch(0) | sighash
● Transaction

○ Always version | locktime
○ If !any prevout(s) | input amount(s) | sequence(s)
○ If !none or !single outputs

● Input
○ Always spend_type | scriptPubKey
○ If any outpoint | input amount | sequence
○ If !any input index

● Output(s)
○ If single sha256(CTxOut)

v1: schnorr signature hash
● Control

○ Always epoch(0) | sighash
● Transaction

○ Always version | locktime
○ If !any prevout(s) | input amount(s) | sequence(s)
○ If !none or !single outputs

● Input
○ Always spend_type | scriptPubKey
○ If any outpoint | input amount | sequence
○ If !any input index

● Output(s)
○ If single sha256(CTxOut)

Reusable Midstate

Chapter 2.2

Taptweak

Taptweak

● Any data can be committed to a public key tweak.
○ Public key remains spendable.

■ Owner of private key can spend with knowledge of tweak.
■ Signing with the tweaked public key does not reveal tweak.
■ The owner of the private key can later reveal the commitment without

revealing the private key.

TapTweak

● A TapTweak is a tweak to an internal public key
○ Default spending path: Tweak is not revealed.
○ Alternative spending paths:

■ Tweak & script branch are revealed.
■ Script branch is executed during validation.

Taptweak

Committing data to a pubkey tweak

● v1 witness program : 33B pubkey Q

Q = P + H(P|c)G where P is the internal key and c is the commitment.

● Spending witness: 64B signature (x(R), s)

The private key is tweaked with H(P|c) before signing

Chapter 2.3

Tapscript

Tapscript

● TapScript is upgraded Bitcoin script.
○ Optimized for Schnorr.
○ Allows for future TapScript versions.
○ TapScripts are committed to TapTweaks.

Tapscript

Tapscript vs. Bitcoin script
● Signature opcodes: Perform verification of bip-schnorr signatures

● Multisig opcodes: Removed

● Checksigadd opcodes: Replace multisig opcodes. Enable signature batch verification.

● Versioning:

○ TapLeaf version: 0xc0

○ Upgradable opcodes: 80, 98, 126-129, 131-134, 137-138, 141-142, 149-153, 187-254

○ Difference to NOP: Immediate success and termination of script execution.

Multisig with Checksigadd

● Output Script

○ pk0

○ checksig

○ pk1

○ checksigadd

○ pk2

○ checksigadd

○ 3

○ equal

● Initial Stack

○ sig0

○ sig1

○ sig2

Multisig with Checksigadd

● Output Script

○ pk1

○ checksigadd

○ pk2

○ checksigadd

○ 3

○ equal

● Initial Stack

○ 1

○ sig1

○ sig2

Multisig with Checksigadd

● Output Script

○ 3

○ equal

● Initial Stack

○ 3

Tapscript Descriptors (I/II)

● Pay-to-pubkey: Satisfying Witness:

○ ts(pk(key)) [signature]

○ ts(pkhash(key, digest)) [preimage] [signature]

○ ts(pkolder(key, delay)) [signature] (nSequence > delay)

○ ts(pkhasholder(key, digest ,delay)) [preimage] [signature] (nSequence > delay)

Tapscript Descriptors (II/II)

● Pay-to-pubkey: Satisfying Witness:

○ ts(csa(k, keys..)) [k signatures]

○ ts(csahash(k, keys, digest)) [hash] [k signatures]

○ ts(csaolder(k, keys, delay)) [k signatures] (nSequence > delay)

○ ts(csahasholder(k, keys, digest, delay)) [hash] [k signatures] (nSequence > delay)

Committing a single Tapscript to a Taptweak
● Taptweak t

○ Q = P + tG
○ t = TaggedHash(“TapTweak”, P, tapleaf)
○ TapLeaf = TaggedHash(“TapLeaf”, ver, size, script)

● TaggedHash
○ TaggedHash(data) = sha256(sha256("Tag") + sha256("Tag") + data)
○ Collision resistance
○ 64B re-usable midstate

Taproot: Spending a single Tapscript

Spending Witness:

● [Satisfying witness elements for Tapscript]

● [Tapscript]

● [Internal Key]

Unspendable script path (WIP)
● Problem: Hidden script path t’

○ Q = P1 + P2 = P1 + P2’ + H(P1+P2’|t’)

● Solution: Default unspendable script path t

○ Q = P1 + P2 + H(P1+P2|t)G

○ Not possible:

■ Hidden t’: P2 = P2’ + H(Pagg|t’)

■ Default t: Q = P1 + P2 + H(P1+P2|t)

https://github.com/sipa/bips/pull/49

Chapter 2.4

Taptree

Taptree

● A Taptree commits multiple Tapscripts to a Taptweak
○ Binary merkle tree commitment structure.
○ A TapTree does not have to be balanced.

■ Allows for Tapscript specific spending cost optimizations.

Taptree

Committing Tapscripts to a Taptweak
 ● TapTweak t

○ Q = P + tG
○ t = TaggedHash(“TapTweak”, P, Tapbranch)
○ Tapbranch is the root node of the TapTree

Taptree -> Taptweak

Committing Tapscripts to a Taptweak
 ● TapTweak t

○ Q = P + tG
○ t = TaggedHash(“TapTweak”, P, Root)
○ Root is root node of TapTree

Protects against

preimage attacks.

● TapTree
○ Binary tree
○ Siblings ordered lexicographically
○ Internal nodes are tagged “TapBranch”
○ Leaf nodes are tagged “TapLeaf”
○ TapScripts are committed to leaf nodes

Taproot Descriptors

● Taproot Descriptor: tp(P, [taptree descriptor])

○ P = Internal Pubkey

○ Tweak is implied from taptree descriptor

● Taptree Descriptor: [tapscript0, [tapscript1, tapscript 2]]

○ TapBranch represented by [child_node0, child_node1]

○ TapBranch are composable [tapscript0, [tapscript1, tapscript2]]

Taproot: spending a script path
● Taproot descriptor: tp(P, [[script_A, script_B], [script_C, script_D]])

● Satisfying witness for script 1: [Satisfying witness elements for script_A]

● [script_A]

● [controlblock]

Inclusion proof for script A

Internal Key

Tapscript inclusion proof

Chapter 3.1

Case Study

Discussion

Where to find out more

● Draft BIPs: https://github.com/sipa/bips/tree/bip-schnorr

● Reference implementation: https://github.com/sipa/bitcoin/tree/taproot

● Mailing list: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/

https://github.com/sipa/bips/tree/bip-schnorr
https://github.com/sipa/bitcoin/tree/taproot
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/

Bitcoin Consensus Upgrade Lifecycle

Innovation
BIP

Proposed
Ecosystem
Feedback

Network
Activation

Service
Adoption

Schnorr +
Taproot

Protocol
Implemen

tation

Mailing list

Questions?

Why this workshop?

● Help share current thinking on schnorr/taproot

● Give engineers a chance to play with the technology

● Involve engineers in the feedback process

Contributions welcome!

https://github.com/bitcoinops/taproot-workshop

https://github.com/bitcoinops/taproot-workshop

